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Abstract

Expressions for the radiation patterns of a slit in an infinite ground
plane covered by a uniform layer of plasma are obtained. The slit is con-
sidered to Le infirnitely long, Two polarizations are considered. In one
case, the electric field is polarized across the gap, and in the other, the
electric field is polarized along the slit.

The effects of anisotropic plasmas on the radiation pattern are also
studied. However, only the non-gyrotropic plasmas are considered.

The solutions to Maxwell's equations are expressed in terms of spec-
trum of plane waves in the rectangular coordinate system. Fourier trans-
form relations are used to match the boundary conditions. The:.solutions
are obtained in the integral form, and the saddle-point integratiocn method
is used to ohiaiin the far-field asymptotic expression of the solutions.

The normalized power patterns are plotted for the various cases

studied, and the results discussed.
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Radiation Pattern of a Slit in a Ground
Plane Covered by ¢ Plasma Layer

1. INTRODUCTION

When a supcrsonic missile re-enters the earth's atmosphere, it becomes
surrounded by a layer of ionized gas. The presence of the ionized gas around
the re-entry vehicle alters the performance of the vehicle's radiative system.
The effects of the plasma layer on the attcnuation and the shape of the antenna
pattern are difficult to predict because the plasma layer is highly nonuniform,
and the geometry of the radiating structure is not always simple.

The object of this report is to study the attenuation and the changes in
the far~-field radiation pattern due to a plasma layer for a simple radiative
system, namcly, a slit in an infinite ground plane covered by a uniform layer
of plasma. The gcometry is a good approximation to either a horn or a slot
mounted flush with the body of the rc-entry vehicle.

Assuming that the slit is infinitely long, the problem is reduced to atwo-
dimensional one. The plasma layer is assumed to be uniform and linear.

Two different polarizations are considered. In Section 2, the case of the
electric field polarized across the gap is investigated. A limiting case of this
particular polarization has been investigated by Newstein and Lurye. 2 The
power patterns are plotted and the features of the patterns are explained in
terms of simple models.

In Section 3, the case of the electric field polarized parallel to the slit is
studied. Radiation patterns with anisotropic but non-gyrotropic plasma layer
are investigated in Section 4.

(Received for publication, 31 October 1962)




1.1 Method of Solution

To solve the problem, the solution of Maxwell's equations is expressed
as an infinite space spectrum of plane waves in rectangular coordinates.
Fourier transform relations are used to match the boundary condition at the
ground plane. By applying boundary conditions at the other interface, the
solution of the field is expressed as a Fourier integral. Finally, to obtain
the far-field radiation pattern, the saddle-point integration method is used

to evaluate the integral.

9

3 ?

1. 2 Effective Permittivity of a Plasma Medium

In this section, the effective dielectric permittivity for the simplest
model of plasma medium is derived, and procedures to obtain the permit-
tivity of more complicated models are indicated.

Plasma is an ionized gas which is electrically neutral. Since the ions
are much heavier than the electrons, the velocity of ions due to the applied
fields is negligible when compared with the velocity of the electrons in this
model. The effect of collision is neglected at first.

Assuming a time dependence of the form ejwt, Maxwell's equations in

complex form are given by:

VXE = -jwpug H (1. 1a)
vXFI'=ju;eO'E':+5 (1. 1b)
J =V (1. 1c)

where p is the electron charge density and V is the velocity of the electrons.
It shall be assumed that the medium being dealt with is homogeneous and that
the applied electromagnetic fizlds are not so large as to change appreciably

the homogeneity of the medium. In other words,

p= Py = constant.

The equation of motion for the electrons is given by
dv . (m .= T

mGr = e(E+V Xu,H) (1.2)
where e = electron charge and m = electron mass. With the initial assumption
that there is no magnetostatic field present, the quantity v X uOT:I becomes
second order and is neglected. The equation of motion in complex form reduces
to

jomv = eE
e | (1. 3)
jwm

v =




Substituting this relation into Egs. (1. 1b) and (1. 1c),

a o =
VXH =jwe B +-= E
* 0 jwm
Ppe A (1. 4)
w meo_
But p . = N e where N _ is the electron density. Therefore,
0 "0 0 Y
. N0e2 7_
VXH =juwey |1 -—5—|E . (1. 5)
w meg

This gives the effective dielectric constant of

2 2
NOe w
€p=€0 1-”2— =€ 1-—L“2 , (1. 6)
w m€0 L &5
2
where w 2 _ NOe
p meg

Since the velocity of the electrons is 90° out of phase with the applied
electric field, there is no loss [ see Eq. (1.3)]. When the effect of collisions
is appreciable, the velocity of the electrons is no longer 90° out of phase with
the applied field. The effect of collisions is included in the equation of motion

as a damping term given below:

v = L
mg—t myv =ekE (1. 7)
where v is the collision frequency. For such a system, the permittivity is
given by
2 2
= —:_R_— i L _u:.E_
ep € 1 V2+‘2 +j = V2+”2 5 (1. 8)

Macroscopically, the important difference between an ordinary dielectric
and a plasm'a medium is that the real part of the permittivity for the plasma
medium is less than €0 Actually, the real part of ep can take on negative
values.

If a magnetostatic field is introduced, then the equation of motion for the
electrons becomes

dv = L =
mat—+muv—e[El+vXB0] . (1. 9)
Such an equation of motion gives rise to a tensor permittivity of the following

form (in the rectangular coordinate system):



2 2
v+ijw wp ._____wb _.L“ 0
L 2 2\ jw .42 2 jw

(v+jw) twy, : (v+Hjw)™ + wy

-Ww w wz
b <.p> 1+ tiw {p>

(v+jw)2 +wb2 (v+jw)2+ u:bY\ jw

0
2

“p
0 0 |

The magnetostatic field is assumed to be in the z direction in a right-hand

coordinate system. The quantity w, is the gyrofrequency and is defined as:

b

1.3 Plane Waves

In the analysis of the radiation problem, the fields are expanded in terms
of plane waves. A brief review of plane waves in semi-infinite medium is
given here. Inthe subsequent analysis, the time dependence ert is assumed.

From Maxwell's equations, the following equation, known as Helmholtz

equation, can be obtained for the electric field:
[V2+y.€;u2] E =0,

where for the rectangular coordinate system

2 3° e 82
V== 4+ 7 v 5 . (1. 10)
ox dy 9z

In general, the solution to such an equation in rectangular coordinate system
is given by:

. -jkyx jkyx ( -jkyy jkyy)( -ik,z jkzz
E(x, v, 2) A0 (e + Fle ) e + F2e e + I‘Se ),

where

E = 2 component of electric field
(x,y, 2)

A, T

0 1’ I“z, and T

5 are complex constants (1.11)

K2+ k242 - wlye
X y z
Consider the geometry shown in Figure 1. Assume that a uniform plane wave
impinges upon the semi-infinite isotropic dielectric from a direction making an
angle @ with z axis, and that the electric field is polarized in the y direction.

With these simplifications, the solution in the free space region reducesto

[-jkz ik z] -ik_x
E = A le Z+Tre 2] e * (1. 12)
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Figure 1. Plane Wave in Semi-Infinite Medium

The first term in Eq. (1. 12) represents the wave coming toward the dielectric
wall and the second term represents the reflected wave. From Maxwell's

equations the magnetic field components Hx and H_ are obtained:

-1 9E k [ -jk_z ik z] -jkxx
= X =2 Arle ? - Te ? e , (1.13)
X Jwpg 0z weq




and
1 oFE -k -ik_z ik Z] ~ik_x
Ty a7 Y
z Jwlg 0x Wig

For this particular polarization, all other field components are zero.
Inside the dielectric medium there is no reflected wave. Thus, the
expression for the electric field is given by
] -j(k' _x+k' z)
E_=Te x z ,
y
where

T = constant

|2 |2- 2_ 2
kx+kz-k = w e

L 1 (1-15)
k _ =k sin®

X

] 1
k _=kcos ©

Again the magnetic field can be obtained from Maxwell's equations. From
the boundary conditions, the value of I' and T can be obtained, as well as the
relation between 6 and 9',

For a more detailed analysis of plane waves see Reference 4.

In this problem, the solution to Maxwell's equations will be expressed
in terms of plane waves like those of Egs. (1. 12) and (1. 15). . .

In the anisotropic case, there is a different relation between k 52 and k z

A discussion of plane waves in an anisotropic medium is given in Section 4.




2. TRANSVERSE MAGNETIC WAVE
2.1 Solution in Integral Form '

The geometry for the first problem considered i:s shown in Figure 2.
At the gap, the electric field is polarized in the x direction and the amplitude
distribution along the gap is assumed to be constant, as illustrated in Figure
3. The magnetostatic field is assumed to be zero.

A very similar problem, namely that of a magnetic line source in the
ground plane covered by a layer of plasma, has been solved by Newstein
and Lurye. 2 The magnetic line source in a ground plane is a limiting case
of a slit in a ground plane with the slit becoming infinitesimally narrow.

Contrary to Newstein and Lurye‘s2 method of expanding the solution
to Maxwell's equations in terms of cylindrical waves, the solution in this
report is expanded in terms of plane waves in rectangular coordinates.
However, the results are the same.

It is clear from the boundary conditions that for the particular geometry

and polarization described in Figures 2 and 3 that

y X z
where the primed quantities represent the electric and magnetic fields within

the plasma and the unprimed quantities represent the fields in free space.

FREE SPACE P

€ Ho X

’/ / ’///' / ///’/ ’//I;/
LASMA MED|UM

A '// /'/ "’//
/// x’/ ’//

/_,_

E
a GROUND PLANE

Figure 2. Radiative Geometry for the TM Wave Case




E, (X,0)

Figure 3. Electric Field at z = 0 for the TM Wave Case

In the free space region z > 1, the following solution is assumed for the
magnetic field:
I -] (kxx + kzz)

a(kx) e dk ,

H (x,z)=
y X

o/ man

where - / ~ 2
k7 t k02 kx o (2. 1)

a(kx) = amplitude function independent of x and z. Thus, the solution
is expressed as a spectrum of outward-going plane waves. If a plane wave
satisfies Maxwell's equations, then certainly the sum, or more precisely,
the integral of such plane waves satisfies Maxwell's equations.

It should be noted here that along the path of integration, as kx goes

from minus infinity to plus infinity, the quantity kz takes on both real and




imaginary valucs. The sign of kZ must be chosen in such a way that the
imaginary part of kz. is always negative. If the positive values are taken
for thc imaginary part, the integral is expressed in terms of increasing
exponentials, and the integral will not converge. Physically such a result
is not cxpected.

From Maxwell's cquations rcsult the following expressions for the
electric field:

_1 oH w k -ji(k_x + k _z)
E_(x,z) =-— Y =( Z_a(k)e * Z dk. o, (2.2)
X Jwe, 29z Jew WE X X
) OH (= k_ -jtk x + k_z)
E (x,2) =— L=y —*ak)e 2 gk, . (2.3)
z jweg 9x -ewey X X

Inside the plasma medium, the solution for the magnetic field is repre-

sented by a spectrum of outward-going waves plus reflected waves as follows:

T

1 t
, - .-k, vk Lz -kox
H y(x, z) =§_x bk x) e + c(k x) € e dk < (2. 4)

k = wNp.€
p #o%p

The propagatilon constan't k _is in general a complex quantity, The
quantities b(k ) and c(k \,) give the complex amplitudes of outgoing and re-
flected waves.

The corresponding electric field is obtained from Maxwell's equations:
1
aH
1 B _1 y
R A T T

1
o k ' -jk 2z q jk zjl -k x
- z z _ z x
'.V_w we; |_b(k o e clk e e dk . (2.5)

1

, ) aH
B 2w &
p

1

1 1
w k' -ik z ik z| -k x
‘=-( X \E)(k|)e 2 tek e Zjle X dk _. (2.6)
[O)] X X X

v-wo WE

1 1
There are three unknowns in this problem: a(kx), b(k X), and c(k x).
To evaluate them, it is necessary to have three equations relating these

quantities. The boundary conditions will provide the necessary relations.
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Consider the boundary condition at the ground plane. Here the ampli-
1
tude of the tangential component of elcctric field I o a8 function of x is
as shown in Figurc 3.

t
Equation (2. 5) for E x reduces to the following at z = 0:

' w k'z , , -jk'xx
E (x, o)=§ [b(k Q- el x)—J e dk
p -

—wWE X . (2.7)

Equation (2. 7) is a familiar expression for the Fourier transform between the
t
k X domain and the x domain. It can be scen readily that the quantity

k‘ 1 1
z
wcp Ea(k x) - ¢k X)jl

1
is the Fourier transform of the electric field amplitude distribution. E x(x, 0).

The Fourier transform of a rectangular pulse is a simple one, and thus, the

transform will be equated to the above expression.

1 1

Kk \ \ 27E asink &
z _ 0 X2

:E_ b(k X) = C(k xﬂ = T a o (2. 8)
p k X2

Equation (2. 8) gives one of the threc required relations, and the other two

relations are obtained at the interface between the plasma and the free space.
At the interface both the tangential component of electric field and that

of magnetic field must be continuous. For thc magnetic field, Egs. (2.1) and

(2. 4) at z = 1 can be equated to obtain:

- -jk 1 .
S‘ atk e % e kax dk
-on X X
’ 1 1
i , i ] kN -3k x
=S I—;3(k ye ik 1. ek ye Zle” X a . (2. 9)
- X X X

Similarly, for the tangential component of electric field Eqs. (2. 2) and (2. 5)
can be equated and thus,

o kz -jk 1 -jk_x
( = alk e e X dk
(2. 10)
t 1 1
o L v -k 1] - .
_ _z z P2 -ik _x
_S_w ep bk x) e c(k x) e e x" dk <

It can be shown that, in order for Eqgs. (2. 9) and (2, 10) to hold, the
quantity klx must be equal to kx. This result is not surprising because it
shows that the phase must be continuous at the boundary, which is also the
requirement from Snell's law. Since the integral now has the same variable,

the quantities inside the integral can be equated, noting that:
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k. =k

x x

v 2 2

kz- kp -k
- 2 2

kz— kO -k

Thus, from Egs. (2.9) and (2. 10) results:

1
-jk 1 cooik L ' ik 1
a(kx) [3 = bk x) e + c(k x) e , (2. 11)
and
o N ik
Zak)e %2 =—% bk e % - ck.)e (2. 12)
0 X Ep X X

Equations (2. 8), (2.11), and (2. 12) give three equations relating the

three unknowns. In solving the equations for a(kx),

, .
21rE0 a sink % eszl .‘
alk ) = , & T . (2.13)
x k (k i) L I
z\ x2 cos k Z1 + J—kzep sin k Z1

Since klx, kz, and k'Z can be expressed in terms of kx, the right-hand side
of Eq. (2.13) can be expressed completely in terms of kx.

The exact solution in integral form has now been obtained [ see Eq.
(2. 1)] . Evaluation of this integral for large values of x and z by the saddle-
point method is used to obtain the asymptotic expression for the far-field

radiation pattern.

2.2 Saddle-Point Method

The saddle-point integration method, also known as the method of
steepest descent, is a technique to obtain an asymptotic approximation for
large values of z to complex integrals of the type

SC g(s) er(s) ds

where g(s) and f(s) are irdependent of z.
In this problem, it is more convenient to change from the rectangular

coordinate system to cylindrical coordinates. Thus,

kx = ko sin ¢
kZ = k0 cos @
dkX
ak_ = dog =k0cos ¢ do

X de
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X =r sin @
X =r cos 8

a(kx) = a(k0 sin ¢)

where ¢, the new variable of integrations, refers to the direction of wave
propagation, whereas 6 refers to the angle of observation point. Although
both 8 and ¢ are measured from the z axis, 6 is independent of ¢ just as
x is independent of kx in the integration.
Substitute these quantities into the integral
w -jtkk x+ k 2)
H = S_m ak ) e X ‘0 dk
and obtain

-jkor(cos o cos 8 + sin ¢ sin 9)
H = S a(k0 sin @) k0 cos ¢ e de
c

y

alk, sin ©) k, cos ¢ e 3kor [ cos(O-tp)]d(p . (2. 14)

As the original variable of integration kx goes from minus infinity to plus
infinity; the new variable ¢ takes the path C shown in Figure 4. The shaded
area in Figure 4 is the mapping of the proper sheet of the kx plane into the
complex ¢ plane. When mapping the k. plane into the ¢ plane, it must be-
noted that the imaginary part of

kZ =k0 cos ¢

must be negative for the reason of convergence. This condition is satisfied
in the shaded region.

The next step of this procedure is to distort the path of integration. If
the path C is continuously deformed into another path B in such a way that

it does not sweep over a singularity of the integrand, then

§c=§B.

In order for the integral to converge, it is also required that the two ends of

the path stay within the shaded region.

The object of the saddle-point method is to choose a path of integration
so that the quantity

exp [RP(-jkOr cos{6-¢} ):|
has a maximum or more precisely a saddle-point, and falls as rapidly as

possible on either side of this maximum. Also along the path near the maxi-
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mum the imaginary part of -jkgr cos(8-¢) is to be constant, or in other words,
the phase of the quantity

e-JkOr cos(8-¢)

is to be constant along the path. This second condition insures that the inte-

grand does not fluctuate rapidly between positive and negative values.

i
E|
[NE]
D
(NE]

o

W

%
)

___

Figure 4. Complex ¢ Plane
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The saddle-point occurs when

’a%‘ [—jkor cos(G-tp):l =0
or, in other words, at ¢ = 6.
If
=0, i,
then
_jkor cos(G-wl—jwz) = kor [sinh ®q sin(9—<p1) -j cosh <pzcos(9-<p1)] .(2.15)
The imaginary part of Eq. (2. 15) is to be constant along the new path, and the con-

stant can be evaluated at the saddle-point ¢ e, ¢, = 0. This gives the equation
for the path

cosh <p2cos(9—<p1) =1 . (2. 186)

It should be noted that in the range -7r<<p1<7r, there is more than one possible
path which satisfies Eq. (2. 16), but only one stays within the allowed region in the
complex ¢ plane. From Egq. (2. 16), therefore,

cos(8-¢ ) = (cosh <p2)-1 , (2. 17a)

and
1
sin(8-¢,) = ¢ [1 - cosz(Q-wlil2 = + tanh ¢,. (2. 17b)

The minus sign must be taken in front of tanh @, in order to stay on the allowed
region.

If Egs. (2. 16) and (2. 17b) are substituted into Eq. (2. 15), then,

sinh™ ¢ -l
-3 - = - ———2— i
jkyr cos(@-¢) = -kgr | ——m o + _] 2 (2.18)

Now there is a new variable @, which goes from minus infinity to infinity.
It can be seen that if r is very large, the quantity
sinh2<p2

exp —kOr coshtp2

has a maximum at @y = 0 and decreases very rapidly on either side of the saddle-
point. Thus, the major contribution to the original integral comes from a small
region of the path near the saddle-point. Therefore, the following approximations
near the saddle-point may be made:
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.2
sinh 99 9
cosh ¢, = %2
2
and
de = 39 de L2 de
8(,01 1 8(,02 2

By inserting these relations into Egs. (2. 18) and (2. 14), it can be seen that
the major portion of the integral is given by
. 2
N u -jk,r -k re¢
H =~2 e‘]"/4 S a{k, sin ¢) k,_ cos ¢ e Y e e de¢ (2.19)
y _—- 0 0 2

where u is a point on the path near enough to the saddle-point so that

sinhzu ~ u2

coshu
is a valid assumption.

If r is made very large, the region —u<<,02<u can be made very small

and still be a good approximation to th2 integral. If the region -u<<,02<u is

small, the following further approximation within the region can be made:
a(kosin @) cos ¢ = a(kosin 8)cos 8

The quantity
a(k0 sin 8) cos @

can now be taken outside the integral and the integral reduces to

s -3jkar pu
H =~N2 e‘]"/4k0cosea(kosin9)e Y ( ek

2
re
. 092 dg, . (2.20)

Y-u

It can be seen that if the limits of integration are extended from minus
infinity to plus infinity, the value of the integral changes very little because
r is assumed to be very large. Thus the integral is approximated further

to the following:
q -jk,r pe -k, e, T
Hy:\/—2_e‘]n/4k0 cosQa(kO sin 8) e g S\ e e dcp2. (2. 21)
-0

The integral above is a well-known definite integral and thus the approximate

solution is
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2 . -jk_r
Hy o kor e /4 ko cos @ a(k0 sin 68) e 0 )
where k. a ‘. (2. 22)
21E, a sin(-g—sin 6) | Ikl cos @
a(k  sin 8) = ﬁﬁ.
0 koa | eok 2
ko cos 6 9 sin e l-cos k 1+ Jepk “o5 © sin k' 1

k‘z = «/kpz-ko2 sin29
In the analysis, the effect of poles of integrand in the complex ¢ plane has
been disregarded. The contribution from the poles can be included in the usual
manner, but can be neglected in the far-field analysis of r approaching infinity
unless the pole lies on the real axis of the ¢ plane. In this problem there was
no pole on the real axis, and thus the analysis is valid.
The expression for the electric field can be obtained in a similar manner.

If E and E are combined to obtain a single component E , then

E,=N€_ H 2 (2.23)

2.3 Power Pattern

The power pattern can now be obtained from the relation
P=3+ :l la |2
2 0 y

For the case of lossy plasma layer, the expression for the power pattern be-
comes quite complicated. A useful form of power pattern cannot be obtained for such
a case, and thus only the expression for lossless plasma will be given here. However,
the equations for the lossy plasma cases are presented in the Appendix.

Since the quantity k' in Eq. (2.22) takes on real and imaginary values
for the lossless case, 1t 1s convenient to give two expressions for power

pattern; one valid when k 1s real, and the other valid when k z is imaginary.

Let
1
k =Nk 2-k 2sine
r P 0
v 2 2
km-JkO sin” @ kp s
where w g
K22k 2(1-—
p 0 2
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Then

. w
k for cos 8 > £ s
z zr w

=
[}

and

1 1 w

jk . for cos @ < -E
zi

w

k
Z

It should be noted that when the plasma layer is lossy, the quantity
1
k 2 is complex instead of pure real or pure imaginary.
1 .
By substituting the relations above for k 2 into Eq. (2.22), the following

expressions for the normalized power pattern are obtained:

)l
IsirC(Z sne 1

1
p -4 sil2 , (2. 24a)
norl kg2 gine J - eozkzrz )
2 cos" k _1+——F——s5in"k __1
| Zr 2, 2 Zr
€ “k,."cos” @
L p o
for )
cos 8 >—P
w
and )
- (koa 2 [
T 1
n ' koa | ¢ 2k' 2
] 1 3 1
[Szgte cosh? k' 1+-0 2 sinh’k ;1
z € 2k 2 cos’p “
P 0
- (2. 24b)
for
w
cos 0 <IB

In normalizing the power pattern, it was assumed that the voltage across the
gap is constant for all cases.
Since cos2 8 is never greater than unity, only Eq. (2.24b) is needed

when wp is greater than unity. However, when wE < 1 there is a definite
w w

1
angle at which k z changes from real to imaginary quantity. This angle will

be called the cutoff angle. The cutoff angle is given by
=f &
6 =cos —E
c w

In Figures 5 and 6,some radiation patterns are plotted. In plotting them, it
was assumed that the slit was infinitesiinally narrow. This assumption

gives the relation
: k. a

. 0" sing
sin 2 _ =1
k_a

sin 6

2
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w
In Figure 5, power patterns are shown for various values of Tp with

fixed plasma thickness. The cutoff angles are indicated on the graph. An

interesting feature o1 the patterns is that when w_p <1, the patterns have
w
peaks just inside the cutoff angle. For the values of 8 greater than the cut-

off angle, the amplitudes decrease rapidly with increase in the angle.

w
When?p > 1, the amplitudes of the pattern are greatly attenuated. This

effect is due to the propagation constant in the plasma given by the expres-

kp = kg [ (iwp*)z} %

which becomes imaginary. Thus the waves are attenuated exponentially

sion

within the plasma layer.

Ny,

kol=m

-80° -70° -60° -50° -40° -30° -20°

w

Figure 5. Power Patterns for Various Values of_wﬂ (TM Wave Case)
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Figure 6 shows the power patterns plotted as functions of plasma layer
thickness. For the particular value of pr chosen, the cutoff angle was 37°.
Since the power patterns are symmetric in 8, only half of each pattern is

plotted. The peaks fall approximately at the same angle and they are
higher for thicker plasma layers.

P(8)

wp 4

4
Ll LI

T T
-30° -20° -10°
8, 8,

T T t
-70° -60° -50° -40%

Figure 6. Power Patterns for Values of kol (TM Wave Case)

Since the ground plane is never infinite in practice, an important
w
relation is the attenuation as a function of _P for 8 = 0. The plot of attenua-

w

tion versus ZR with the plasma thickness as a parameter is given in Figure
w

7.
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ATTENUATION (DB)

[
10 4
20+
w AND THE VOLTAGE
ACROSS THE GAP ARE \
1 HELD CONSTANT.
Ze
30 I 1 T T w
o 0.5 1.0 1.5 2.0

w
Figure 7. Attenuation vs. —C)B at 8 =0

2.4 Plane Wave Model and Transmission Line Analogy

To get some physical feeling for the problem, consider the following
system.
Let a fictitious plane wave source at z = 0 which constrains the x com-
ponent of the electric field to be of the form
-jk.x sin 8

0

ex(z=0)=E cos O e 5

0
where ko = wNpgE (Small letters are used to denote the field compo-

nents for the plane wave model.)
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\‘\L

FICTITIOUS SOURCE

Figure 8. Plane Wave Source

If freedom to choose 6 is assumed, and the source extends from
x = - to x = =, then such a source propagates a plane wave in the @
direction with the magnetic field given by:

{E_Q -jko (x sin 8 + z cos 8)
h =E N, e -{y . (2. 25)

Thus for any 8 the choice is between -~ 7/2 and 7/2 the source propagates
a plane wave with the electric field amplitudes equal to EO.

Now suppose that a slab of plasma is placed against the source as
shown in Figure 9.

)

I, A

LTI TS LSS LSS
PLASMA

WIIIIIIIIIIIIIIIIIIIIIIIS

//.//// X

LLLLLLLLLLLLLLLL L g

PLANE WAVE SOURCE

Figure 9. Plane Wave Source with a Plasma Slab

To solve for the fields, assume plane wave solutions in the two regions

of interest. Inside the plasma layer there is a solution of the following form:
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) jk _z -jk _x
. . [-jk 22 +T e e
h . = H 0 L& (2. 26a)
3h H K ik’ ik’ ik
! - -JK Z Jk z -1k X
e = A OZE NS S P (2. 26b)
X Jwe dz we
p p
oh H k ik’ ik’ ik
U 1 o x B zZ J zz -l xx
= y =
e joe Tt T {e + T e e (2. 26c¢)
p p
where
1 1
k = k_sin 8
X p
1 1
k = k cos 8
z P
In the region z > 1,
-jtk_z + k_x)
h =H e Z * (2. 27a)
y 0
Hok -j(k_z + k_x)
e = Z e Z x (2.27b)
X WE
0
o = Tl -j(kzz + kxx)
z wey e (2 27c)
where
kx = ko sin 8
kZ = ko cos 8

At z = 0, the following relation from the boundary condition on the x
component of the electric field results:

-jk % sin 8 H .k -jk _x
0 _ 0" =z _ X
EO cos B e = —wep [1-T]) e

Since the relation must hold for any x. then

1 1
k,sin®=k _=k_ sin 8
0 X o]

and
1 1

H .k

-0 =z _
E, cos 8 = ae [1-T) . (2.28)
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From the boundary conditions at z =1, the following relations are
obtained:

]
1% W I ik 1
Hoe =H,|le Z4+re 2 (2.29)
and
1 1 1 1
k. -kl H k[ -k 1 ik 1
HO wz€ e = e -Te 2 . (2. 30)
0 p

There are three equations (2. 28), (2. 29), and (2. 30), and three unknowns
1

H 0 H and I'. Solving for H

0 0

0 k1 L (2. 31a)
0 g Ho € . k € 0
coskzl+jkz€ sink 1

Z p i

Thus the amplitude of the magnetic field in the free space region is given by:
Iy Eq
|hy| = v 2 2

2.0 ko€ o |?
cos kZl+_—k_E:T sin kZl
Z p

(2. 31b)

The interesting part of this result is that as far as the 8 dependence is
concerned, the expression for HO is exactly the same as the far-field
pattern obtained for the narrow slit case [ see Eq. (2.22)]. The similarity
of the results suggests interpretaticns for some features of the power pat-
terns in terms of the plane wave model. However, in order to make the
interpretations easier, analogies can be drawn with the transmission line.

The transmission line analogue of the plane wave model is found to be
as shown in Figure 10. (See Reference 4 for transmission line analogues

of plane waves. )

h' h,
— —
k! k
* t Z; * w(z * ,zo = u%
E,cos8( ) e, L e, 0 Zs
- - ﬁ' = k'z = ﬁ E kz
—if = 3
2=0

Figure 10. Transmission Line Analogue
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. 1 1
The analogue gives the z variation of the field components e %’ h v

e, and hy' If the system is solved for hy‘ then

-jkz(z-l)

h =8, -2 e
k € 1
sink 1
z

y 0 Ho
cosk' 1+ z 0
Z ]kze

p

The power propagated per unit area can be computed from

=;./6_0 2
p 2 EO Ihyl

0 Ko .
Let us investigate the peaking effect observed in Figures 6 and 7. It
should be noted that these peaks are greater in amplitude than the case with-

out the plasma slab.
From Eq. (2. 31),

€
- ’0 1
lhy|'E k|2€2

o

0 Ko '
1- [1-—25—0— sin k 1
k € z
zZ p
[€0
Thus |h | can become greater than E N—
Yy 0 Mo
when
klze
< <
0 - 1
zp

This condition is indeed satisfied in the range

€
sin-1<—L>< 8< 8
€ te c
p 0
and within this range of angles, the power radiated is greater than the "no

plasma" case.
Similar relations are obtained for H_in the narrow slit problem [ see

Eq. (2.22)].
In terms of the transmission line analogue, the condition
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is analogous to

'
Z
__0.<1
0

N

or
'

Z <Z

0 0’
By adding a transmission line of lower characteristic impedance to a matched
line, the impedance seen from the source is always reduced. Hence, more
power is delivered to the load.

The transmission line analogy also shows why fluctuations in the power
pattern for thick plasma lz?yers are observed. As © changes from 0 to Qc,
the propagation constant k z in the transmission line analogue changes from
kp to 0. Thus when k_1 2> 1, the length 1 changes from many wavelengths to

zero wavelength as 8 is changed from 0 to Qc. In other words, the impedance
seen from the source fluctuates as 8 is varied and fluctuations in the power
pattern result.

w
When the angle 8 is greater than Qc or when .wg 21, the transmission
line analogy no longer holds. In such a case, the plane waves within the

plasma layer are non-uniform and are attenuated in the z direction.




3. TRANSVERSE ELECTRIC WAVE

3.1 Solution

Now consider the case of the electric field polarized along the gap in y
direction. The geometry for this problem is shown in Figure 11. The field-
strength distribution across the gap is assumed to be co-sinusoidal as shown
in Figure 12. This particular configuration corresponds to a waveguide
opening into half space with the waveguide excited by TElO mode.

FREE SPACE ?
77777 »

Figure 11. Radiative Geometry for the TE Wave Case

E,(x.o)

[]
mja
mja

Figure 12. Electric Field Amplitude Distribution at z = 0 for the
TE Wave Case




The method used to solve this problem is very similar to the one used

in the previous problem. In this particular polarization and geometry, it
can be seen that

E =E_=H =0

y
1
E_=E_=H_ =0
X z y
There is only one component of electric field and in the free space it is
represented by the following integral:
o -j(kxx +k z)
E (x,z)=§ atk ) e Z 4k (3.1)
y - x x
The solution above is identical to the one assumed in the previous problem
except this time the solution is assumed for the electric instead of magnetic

field. The corresponding magnetic field components in free space region are
given by the following relations:

21

) 9E “k_ -l x + k 2)
Hx (x, z) =jw_#0 'le = - _.,.,‘7#_6 a(kx) e dkx (3.2)
and
8E o k -ik_x + k_2)
! Y - x X Z
Hz(x, z) ~jwp0 5% S_w Gig a(kx) e dkx. (3..3)

Inside the plasma medium, the solution is represented in terms of out-

going waves and reflected waves:

1
s ' -jk 2 1 ik z -k x
E'y(x,z)=gw [b(kx)e z +clk )e z ]e xc11<x(3.4)

and the corresponding magnetic field is given by:




' _1 aE
H (x,z) =~ —r
Z Jwpg ax

' 4

1
© k [ . -k .z . gk z} -jk _x
- X Z Z X J
Sm oH, bk x) e +ck x) e e dkx

(3. 6)

'
At the ground plane the tangential component of electric field, E _(x, 0),
must be 0 everywhere except at the gap where the amplitude distribution
becomes co-sinusoidal as discussed earlier. Equation (3. 4) for the electric

field becomes at the ground plane:

' = 1 ' -jk' X 0
Ey(x,0)=gw [b(kx)+c(kx)] e X dk (3.7)

which indicates that the quantity

b(k x) + c(k x)

is the Fourier transform of the co-sinusoidal electric field amplitude dis-

tribution. By equating the Fourier transform to the expression above, then

ol p+ea'n] - 022 (3. 8)

Equation (3. 8) gives one of the three required relations to solve for a(kx).
At the interface between the plasma and the free space continuity,
conditions on the tangential components of electric and magnetic fields
result. Thus, the two electric fields El (x,1) and E_(x,1) are equated and
also the two magnetic fi'elds H'x(x, 1) and Hx(x, 1). In equating them, it
can be seen again that k X must be equal to kx. The equality provides the

equation of the quantities inside the integral as in the previous problem.
By equating Egs. (3.1) and (3. 4) at z =1, then

' 1
-jk_1 . o-ik 1 . k1

alk e % =bk e *+ck e z (3.9)

for the electric field continuity. For the magnetic field continuity relation,
from Egs. (3. 2) and (3. 5) results

1
-k 1 .k 1]

-ijk 1 z 2
-c(k x) e

k, ak)e © = k'z [b(k'x) e (3. 10)

Equations (3. 8), (3.9) and (3. 10) give three equations and three unknowns
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enabling us to solve for a( kx). By solving the equations for a(kx), there
results

21rE0 cos k|x ——;— ejkz1
a(kx) = (_71.)2 - k' 5 " (3.11)
a b'e

1 z 1
cos k 1+ j—= sink 1
Z Z

Z

As before, Snell's law allows the quantities klx, kz and klz to be expressed
in terms of kx.

The far-field approximate expression for the electric field can be ob-
tained by the saddle-point method, and the result is as follows:

. -jk .r
E = Jk_i"r JT/4 k, cos @ alk, sin @) e 0 (3.12)
0

where

kor >> 1.

If Eq. (3. 11) is used to evaluate a(k0 sin @), the following substitutions can
be used:
k_=k_=k, sin @

X 0

x
kz = ko cos @
1 2 2 l
k= - i z
z [kp ko sin 9]
3.2 Results

The normalized power pattern can be obtained from the relation
[€
1,/ 0 2
= 3N— |E
P*z2 o l yl

Again, only the lossless case is considered. In the lossless case, the
quantity klz takes on either real or imaginary values as in the case of the
transverse magnetic wave studied in the previous section. Thus two
expressions are given for the power pattern.

Let

[ Y

U 2 2 . 2 .
k = [k -k .“sin” @ fork 2 k_sin @
zr o} (8] o} 0
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and %
]
2 (P e o & fork <k_sin@ ,
zi 0 p p 0
1
where °-’p2 2
k =k .=
p 0 w?

Then the following expressions for the power pattern can be obtained from
Egs. (3.11) and (3. 12). The power is normalized so that the electric field
amplitude between the slit is kept constant for all cases. Furthermore,
the value of;l_- is given to the power radiated in 8 = 0 direction for the "no

plasma" case.

k_.a 2
o (% I 2
P -1 (lr_) cos\ 2 sin @ cos @
g ANE L(lr_)z -k2sin? o 9 2 Bl sinzklzrl
a 0 cos” k zrl + _0|_2_
k 2 (3. 13a)
for
> .
kp ko sin @ ,
and

(funo) ||
o =l(£)4 cos —z—smg CQS2 C]
s 2

n ‘a’ 2 2
g 2 . 3 cos @
(E_) =y G "J coshZ k _1 +—= sinh? k.1
Zl k . VAN
z (3. 13b
for
< .
kp ko sin @

If the plasma layer is lossy, it is necessary to use

2 2
w
kp=k0 1+(V—+J%W

1 1
to obtain k 2 In such a case, k z is complex and a simple expression for
power cannot be obtained. However, the exact expressions.for the lossy plasma
case are given in the Appendix.

For the particular electric field polarization considered in this section,
radiation from an infinitesimally narrow slot is not possible. Thus, for
the calculation of the radiation pattern, a value of .8 was assigned to 8
the ratio of slot width to free space wavelength. The value assigned is a
typical value for the ratio of waveguide width to free space wavelength for
a TE10 waveguide mode.
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The radiation patterns are shown in Figures 13 and 14. Unlike the
transverse magnetic case treated in the previous section, the power pat-

tern without the plasma layer is not omni-directional.

Kol ® L 4
LI 1.6w

T T T T = o
-80° -70° -60° -50° -40* -30°* -20* -10° 10° 20° 30° 40° 350° 60° TO* 80°

W
Figure 13. Power Patterns for Various Values of _wB (TE Wave Case)

P,(8)

: 3 T T T T T T T
-80° -70° -60°* -50° -40° -30° -20° -i0®

Figure 14. Power Patterns for Various Values of kol (TE Wave Case)




Again, analogies with the transmission line can be drawn as was done
in Section 2. However, the characteristic impedances of the equivalent
transmission lines must be re-defined. For instance, it is necessary to

Wi k
identify Z, WithT— instead of
z

wi . {(See Figure 10 and the subsequent
0

analysis. )

Since the quantity kZ/k'Z inthe de'nominator of Eq. (3.13a) is always
greater than unity for real values of k 2 the radiated power never exceeds
that of the "no plasma" case. As a result, peaks are observed whenever
klzl = nT where n is a non-zero integer. Whenever k 1 < 7, the only peak

is the one at 6 = 0 and the power pattern decreases monotonically with 6.




33

4. ANISOTROPIC PLASMA

4.1 Introduction

In the presence of a magnetostatic field, the plasma medium becomes

3

anisotropic. In general, with the magnetostatic field in the z direction
in a right-hand rectangular coordinate system, the relative dielectric

permittivity can be described by the following tensor (see Section 1. 2),

2 2
1+ He “p ) “b — “p 0
(i) + w7\ jo (rjw) +wy Je
““p "’p2 i) c"pz
7 \ 5o/ 17 7 \Jo Y
(r+jw)® + wb“ J (v+jw)” + wy J
2
()
0 0 1+ 2
(v+jw)(jw)

Because the off diagonal elements of the tensor are complex quantities,
the electromagnetic waves in such a medium propagate in a very complex
manner. Thus only the special case of a very high magnetostatic field is
studied.

When the magnetostatic field becomes very high, the dielectric tensor
approaches the following expression:

2
w
° QR (P .

The off diagonal elements go to 0 and the only remaining element different
from the free space permittivity is the one associated with the direction of
the magnetostatic field vector.

In the analysis to follow, it is assumed that the magnetostatic field is
strong enough so that the above tensor is a valid representation.

4, 2 Propagation in Anisotropic Medium

At this point, an investigation of electromagnetic wave propagation in
an anisotropic medium is appropriate.

Consider the geometry shown in Figure 15. The space is filled with
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an anisotropic dielectric which can be described by a dielectric tensor of

the following form:

€ 0 0
X
0 € 0
y
0 0 €
z

Assume that a uniform plane wave travels in the 6 direction and per-
pendicular to the y axis, and that the magnetic field is polarized in the y

direction.
Since the medium is non-gyrotropic, this configuration is as follows:

From the equation

vV XH = juek ,
we obtain the relations
-1 9H
Ex - jwex 0z 4.1)
and
1 oH
15, 5 jwe,  Bx : 4.2)

The other curl equation
v XE = -jupH

yields the following relation:

1 oE OE
H = — x z
y e 9z ax . 4. 3)

By substituting Eqs. (4. 1) and (4. 2) into (4. 3), the following partial dif-

ferential equation for Hy is derived:

2 2
9"H 9"H
==l 1 vy L ¥y
Hy = — R 5 . 4. 4)
w H x 0z 8x

The general solution to such an equation is given by:
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-jk_x jk_x -ik 2 ik z
H=A<ex+Rex <e2+ReZ
y 1 2

which, when substituted back into the equation, gives:
2
k k
w2 - + w2 - = 1 . (4. 5)
Hotx Koy

Equation (4. 5) is the relation that must hold between kx and kz in the mode
of propagation considered.

The propagation constant k, as a function of 8, can be obtained by

substituting kx =k sin 6 and kZ =k cos 6 into Eq. (4.5). It is found that

€€w2
k=[ xz* Ho

;l_sx cos2 8 + €z sinz 8

Figure 15. Plane Wave in Anisotropic Medium
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4.3 Solution

The problem of finding the radiation pattern with the anisotropic plasma
is approached in much the same way as in the previous cases. It is seen that
there are only two interesting configurations. In both cases, the polariza-
tion of the electric field at the gap is in the x direction as in the problem -of
Section 2. In one case, the magnetostatic field vector is in the z direction,
and in the other, it is in the x direction. Any other combination of magneto-
static field direction and electric field polarization reduces either to the
case with no plasma or to the case already studied due to the fact that two

of the diagonal elements of the tensor have the value of € Thus, only the

o
two cases mentioned are considered.

The geometry and the excitation of this problem are the same as de-
scribed in Figures 2 and 3. Since the plasma medium is non-gyrotropic, it

is expected that.

assuming of course that the magnetostatic field points either in x or z
direction. As before, the solution for magnetic field in free space is
assumed to be of the following form:

oo -jk_x + k_z)
H =V ak Je  * % dk (4.8)

y v_w X

with the corresponding electric field components

0 kx -j(kxx + kzz)
Ez = -S_w “’60 a(kx) e dkx s 4. 7)
and
© Kk -jlie x + k 2)
Ex = B _z_weo a&x) e dkx . (4. 8)

Inside the plasma medium, a solution identical to the one assumed in
Eq. (2. 4) of Section 2 is assumed for the magnetic field as shown:

1 1
Cee [ P T Y S S
Hy Sw b(kx)e +c(kx)e e dk - (4. 9)




37

However, this time it must be noted that there is a diffcrent relation between
1 1
k x and k z' namecly;

v 2 v 2

kx kz

5 ; +w2 - = 1 . (4. 10)
w“OZ MOx

The electric field in the plasma medium is given by:

1 1 1
' £2 k ' -ik 2z ] ik Z] -3k _x '
- z zo z X
E S‘ o Toe, [b(k x) e ck x) e e dk (4.11)

and
1

1 o k ' -jk
E = S‘ £ Ibk e
z J_o we, x

0

z q .
z jk _z -3k x
velk ) 2 :l e ¥dk,. (412)

The procedure henceforth for finding a(kx) is exactly as that in Section

2, and thus a detailed analysis is omitted. The Fourier transform technique
is used to match the boundary conditions. As before, the continuity con-
ditions on the electric and the magnetic fields yield Snell's law giving the
relation, kx = k’x.

The resulting function,a(kx), is identical to Eq. (2.13) except that €

p
is replaced by €
ZnEO a sin (k'x%) lf Cjkzlr
a(kx) 5 - T (4. 13)
k(e 3 U K% -
COSkzl+Jke smkzl
zZ X

t 1
From the relation kx =k - k . can be evaluated in terms of kx using Eq.

(4. 9) to get

b=

2
: ) f k.
k = w y0€x -?—6 o (4 14)
oz ]

The values of € and €, depend on the direction of the magnetostatic field
vector. The relation between kx and kZ is given by:

o=

2
- ) . (4. 15)

2
kZ = (w Ho€o - k
Thus, a(kx) can be expressed entirely in terms of kx.

By applying the saddle-point method, the far-field pattern is obtained
and is as shown below:
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il itk -
H '—!N/r k_cos © a(l-c0 sin 6) e

4.16
, = VEE Ko (4. 16)

The quantity a(k0 sin 8) can be evaluated using Eq. (4. 13) and the auxliary
relations in Egs. (4. 14) and 4. 15).

4,4 Results

In the following analysis, it is assumed that the plasma layer is lossless.
The power pattern for the lossy case can be obtaired by substituting the proper
values of € and €, into Egs. (4. 13), (4.14), (4.15), and (4. 16).

(a) Magnetostatic field vector in the z direction

When the magnetostatic field is z directed, then

By substituting these quantities into Eq. (4. 14) and setting kx = ko sin 0,

there results

2 w ?
' cos O-—Ez—
- W
2

2

(4. 17)

w ]
The expression above shows that when —E is greater than unity, k z is

w
always real. However, when 732 <1, k'Z takes on either real or imaginary
values. Thus it is again convenient to obtain two expressions for the power

pattern.

1
Let 2 w2 ¢
cos O-—p2— ”
1
k =k |——=£— for cos 8 > —2
zr o | w2 w
L 1__22_
(€3] -
and
2 2
w
—22-- cos @
! w
k .=k
zi 0 w?
w
1-‘w)§ forcosQ<—wL<1

By using these relations with Egs. (4. 13) to (4. 16),the following expressions
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for the normalized power pattern are obtained:

koa 2
1 sin ('2—- sin @)
P == .
n r k.a k' 2 .
D) sin @ 2 T L2
cosh” k zi1+ ko o5 B sinh” k zi1 (4. 18)

for

w

cos 8 <P <1

w
and

k.a 1 2

. 0 .
1| sin (—2— sin @)
P = 1
n r k.a 5 (4.19)
0 in 0 k'
5~ sin 9 or 2
€08 kot *{F o) Sin K gl
for q
k . real number.

Equations (4. 13) and (4. 19) give the power pattern for the case of
infinite magnetostatic field directed parallel to the z axis.

The radiation patterns as function of w—u‘? are shown in Figure 5. It is
assumed that the slot is infinitesimally narrow. Qualitatively the patterns
are quite similar to those in Figure 5, the case of no magnetic field. How-
ever, unlike the patterns of Figure 5, the peaks are higher for larger
values of_u:_)a and the normalizi’d power is unity in the direction of the
magnetostatic field even when_api is greater than unity. This latter effect
is expected because the propagation constant in the direction of magneto-
static fieid reduces to that of the free space. The wave traveling in this direc-
tion has its electric field polarized perpendicular to the direction of the mag-
netostatic field. Since the dielectric permittivity associated with the direction
perpendicular to the magnetostatic field is €y the wave propagates with the
free space propagation constant.

(b) Magnetostatic field vector parallel to the x axis

Now consider the case of magnetostatic field parallel to the x axis. In
this case,

2
w
Ex € (1 --;92—)

€ =€
Z 0

By substituting these relations into Eq. (4. 14) and setting kx 3 ko sin 6
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Figure 16. Power Patterns for Various Values of_gwith the
Magnetostatic Field in the z Direction

Then from Egs. (4. 13) to (4. 16) the following expressions for the normalized
power pattern are obtained:




koa :
1 sin (T sin @)
P =
n r koa ]
- sin ©
for wp
— <!
and
koa &
1 sin -5 sin @
P =
n r k. .a
L —-g— sin @
for
w
@ >1

Shown in Figure 17 are the patterns with the magnetostatic field
parallel to the x axis. Unlike the previous cases studied, power radiation

is greatest along the ground plane.

ceeds unity. As expected, the normalized power radiation is unity in the

direction of the magnetostatic field.

In addition, the amplitude never ex-

B R

Figure 17. Power Patterns for Various Values of._wB with the
Magnetostatic Field in the x Direction
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(4. 20a)

(4. 20b)
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Appendix

Radiation Patterns for Plasma Layers with Losses
{No Static Magnetic Fields)

The power patterns for the lossy plasma layer can be derived from the
general expressions for the transverse magnetic ang electric wave cases
[ Eqs. (2.22) and (3. 12) respectively] by allowing—eR to become complex
in accordance with Eq. (1.8). The following results are obtained after some
algebraic manipulation:
(A) Transverse Magnetic Wave
(A1)

2
. a
sin (k0 3 sin Q) 4(A2 - B2)
¥D+

1
P [y =
n.r ko%sine

5 2
where —€P—=n = A-~-jB
0

2
C-= e2m1 [(Ako cos 8 + B)2 + (Bk0 cos 8 + a) ]—%
ko
_ ~2al 2 2 1
D=e¢e [(-Bkocos 0+ a) +(Ak0cose 8) ]-—;—2-
0

o
"

k2

4 sin 281 [ aff - AB k02 cos2 9];
0
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o]
"

2 cos 281 [Az k02 cos? ¢ + B2 ky” cos® @ - o - 32]—

&
o =k, [(A - sinZ 0) + Bz] sin y

Sl

8= ko [(A = sin2 9)2 + B2 } cos y

-1 B
tan -——2-—
<A - sin 9)

(B) Transverse Electric Wave

o=

Yy =

(A2)
5
a . i 2
b - (£)4 cos~<k0-2- st) 400529[a2+ﬁ2]
n a .l &_kzsng [C+D+E+ F]
(3) %
where
€
_E_B = n2=A-jB
0
C=e2°‘1 [(ﬂ+k0 cos 9)2+02]
D= e-Zal [(B - ko cos 9)2 + a2]
E=2(l32+a2-k02 cos? @) cos 281
F=-4ak0 cos @ sin 281
y 1
4
o =k0 BA-sin2 9)2+B2] sin ¥y

>l

B = kO [(A - sin2 9)2 + Bz] cos ¥

- ol B )
‘Y-‘Etan '—2‘
A - sin 6

It should be noted that, since B is a positive number in the notations used,
the following relation for y holds:

<y< T
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